

Applications

Data acquisition systems

Road bed analysis

Platform levelling

Structural monitoring

Pipeline levelling

Ship ballast transfer systems

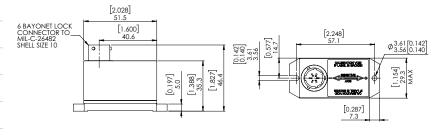
T640 Series

DC-Operated Tilt Sensor with unfiltered and low pass filter outputs

Features

- Ranges ±30°, ±60° and ±90°
- Essentially zero temperature coefficent of damping ratio
- Filtered and unfiltered outputs simultaneously available
- Integral temperature compensation
- DC input DC output
- Signal ground isolated from power ground
- High reliability

Benefits

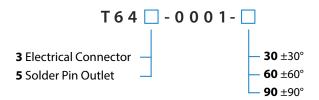

- High accuracy
- -40°C to +100°C temp rating
- Integral temperature compensation
- High reliability

Electrical Connections

Pin A + Supply
Pin B Ov Supply
Pin C Signal ground
Pin D Signal output (filtered)
Pin E Signal output (unfiltered)
Pin F Not connected

SIDE VIEW

PLAN VIEW


Specifications

Specifications by Range @25°C		± 30°	± 60°	± 90°
Output Impedance	Ω (nom)		1Ω	
Non-linearity (see note 2)	% FRO (max)		±0.5%	
Hysteresis			0.02%	
Resolution			0.001%	
Damping Ratio			0.7 (±0.2) @ 25°C	
Output Impedance			1Ω	
Filtered output response			-3dB at 5Hz, 2-pole	
Cross-axis Sensitivity (see note 3)	% FRO (max)		± 1	
Zero Offset (see note 4)	Volts dc (max)		±2%	
Thermal Zero Shift	%FRO/°C (max)		±0.03%	
Thermal Sensitivity Shift	%Reading/°C (max)		±0.03%	
Weight	Grams (max)		120	
Electrical				
Full Range Output (FRO) (see note 1)	Volts dc		±5V dc ±2%	
Input Voltage	Volts dc	+6	to 32Vdc Unregulated	
Input Current	mA dc (max)		100	
Environmental Characteristics				
Operating Temperature Range °C			-40 to 100	
Compensated Temperature Range °C			0°C to 50°C	
Storage Temperature Range °C			-55°C to 130°C	
Shock Survival			200g for 2ms (½ sine wave)	
Insulation Resistance			$20\text{M}\Omega$ at 50V dc	

Notes

- 1. Full Range Output is defined as the full angular excursion from positive to negative, i.e. $\pm 90^{\circ} = 180^{\circ}$.
- 2. Non-linearity is determined by the method of least squares.
- 3. Cross-axis Sensitivity is the output of unit when tilted to full range angle in cross-axis.
- 4. Zero offset is specified under static conditions with no vibration inputs.

Model Designation & Ordering Code



Please specify Mating Connector 3CON-0009 if required

+44 (0)1256 630 300

